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Codebook Construction. The codebook can be viewed as
a partition of the continuous high-dimensional local feature
space. Partitioning by a regular lattice [16] is a simple scheme,
but is shown to yield poor results in image retrieval [3], due to
its data-independent nature. Therefore, unsupervised clustering
algorithms such as k-means [6] are typically used to construct
visual codebooks. To speed up this process, hierarchical k-
means (HKM) [4], approximate k-means (AKM) [3], and their
variations [17], [18] are employed. To fill the performance gap
when the codebook is trained on irrelevant data, Xie et al. [19]
introduce the weighted visual vocabulary on general datasets.
To further improve the discriminative power of codebooks,
some works also exploit supervised information [20]–[22].
For example, Cai et al. [21] embed semantic information
into the codebook by learning multiple sub-dictionaries with
specific semantic meaning. Lopez et al. [23] integrate over-
segmentation algorithms and spatial grids into the clustering
process to narrow the semantic gap between visual words and
visual concepts. Zheng et al. [24] design a Bayesian approach
to alleviate codebook correlation and achieve effective code-
book merging.

Feature Quantization. Typically, hundreds or thousands of
local features are detected in an image. These features are
further quantized to certain visual word(s) in the codebook
via approximate nearest neighbor algorithms [3], [4], [9]. The
quantization process is prone to a large information loss: a
128-D double SIFT feature is transformed into a single integer.
This problem leads to visual word uncertainty and ambiguity
[25], [26]. To deal with quantization error, soft quantization
[27]–[29] is employed, assigning multiple visual words at a
cost of increased the query time and memory overload. Similar
in nature, sparse coding [30] calculates a linear combination
of visual words to reconstruct the original feature. Constraint
quantization [31] neglects features which lie far from the
cluster centroids, improving efficiency while remaining high
retrieval accuracy.

Matching Verification. The BoW model treats an image as
a bag of coarse visual words, which produce false positive
matches very often due to the low discriminative power. On
one hand, spatial cues are proved to be effective in various
tasks [32]–[35]. In image retrieval, spatial constraints among
features are considered [36]–[38]. The geometric context a-
mong local features can be also encoded into visual word
assemblies [36], [39]–[41]. In [39], supervised approaches
are employed, yielding a visual phrase vocabulary. Another
promising strategy is to make use of binary features, or hash
codes [42], [42] to provide complementary cues. For example,
Hamming embedding [43] rebuilds the discriminative power of
SIFT by providing binary signatures to filter out false matches.
Some recent works, e.g., [44] investigate the bit-wise nature
of binary features and design codebook-free quantization
schemes. Complementary evidences also include local features
[45], [46], global features [47], [48], and multi-level ones [49],
[50]. It is shown in [45] that feature fusion is capable of
achieving state-of-the-art performance on benchmark datasets.

Visual Word Weighting. The BoW model represents an
image as an visual word histogram, each entry of which is
assigned a weight. The default weighting method involves

the TF-IDF scheme [13]. A variant of TF-IDF includes [14],
which addresses the intra- and inter-image burstiness problem
using a combination of modified TF-IDF formulas. On the
other hand, visual word weighting can also be derived from
other clues, such as quantization [27], [30], spatial context
[51], [52], semantic information [53], [54], etc. Quantization
based weighting approach represents each local feature as a
linear combination of visual words, which are then accumu-
lated into the final histograms. Wang et al. [51] propose to
incorporate the information of both the vocabulary tree and the
image spatial domain into the contextual weighting. Su et al.
[53] predict a set of semantic attributes for the entire image as
well as for local regions, and use these predictions to build the
visual word histograms. Our work, in its nature, focuses on the
generalization of TF-IDF weighting scheme. The visual word
frequency is re-estimated by Lp-norm pooling in an offline
manner. We then optimize the parameter to achieve a good
balance between TF and IDF weights.

III. PROPOSED APPROACH

This section gives a formal description of our proposed Lp-
norm IDF formula. Assume that an image collection possesses
N images, denoted as D = {Ii}Ni=1. Each image Ii has a set
of keypoints {xj}di

j=1, where di is the number of keypoints
in Ii. Given the codebook {zk}Kk=1 with a vocabulary size
of K, image Ii is quantized into a vector representation
vi = [vi,1, vi,2, ..., vi,K ]T , where vi,k stands for the response
of visual word zk in Ii.

A. TF-IDF Revisit

The TF-IDF weighting scheme is a classical method used
in the field of text retrieval and classification. It was adopted
in image retrieval by Sivic et al. [6] in 2003. In the TF-IDF
formula, the TF part reflects the number of keypoints featured
by this visual word. As a result, the TF distribution in an image
is informative about textures, such as repetitive structures. On
the other hand, the IDF part determines the contribution of
a certain visual word. The presence of a less common visual
word in an image may be a better discriminator than that of
a more common one. The IDF weight of a visual word zk is
denoted as:

IDF (zk) = log
N

nk
, (1)

where N denotes the total number of images in the collection,
and nk encodes the number of images where zk occurs. This
weight is the Collection Frequency Weight (CFW) introduced
by Sparck Jones [13]. In text retrieval, a variety of weighting
methods have been proposed, such as the Okapi-BM25 [55],
the pivoted normalization weighting [56], etc. Typically, these
methods focus on the TF part. A comparison with Okapi-
BM25 is presented in Table II.

Taking into account the TF-IDF weighting, the similarity
score between two images q and d is,

sim(q,d) =

∑K
i=1 qidiIDF (i)2

∥q∥∥d∥
, (2)
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where ∥ · ∥ represents L2-norm and ∥q∥∥d∥ forms the nor-
malization factor. In Eq. 2, qi and di encode the TF scores
of visual word i in two images, respectively, and K is the
codebook size. A comparison between different normalization
methods is shown in Section V-C. We use the same similarity
function as in [43].

The idea of TF-IDF is also implicitly included in other
models, such as the Fisher Vector (FV) [57], [58]. It is shown
that under the Dirichlet compound multinomial model, the
fisher kernel is closely connected with the TF-IDF method
[59]. In [58], the GMM model has a similar function: a
descriptor which falls into a frequent Gaussian component
and which is close to the center is likely to be a background
distractor, and is automatically discounted. The performance
of FV is shown to be superior to BoW [58] with a compact
representation. For BoW model, however, since the number
of visual words is large, it is not tractable to estimate each
visual word as a Gaussian mixture. Moreover, the proximity
to cluster centers is typically reflected in weights such as in
Hamming Embedding [43] or soft quantisation [27], rather
than in IDF. Therefore, this paper concentrates on the TF-IDF
method applied in BoW model. A possible future work would
be an exploration to the TF-IDF discount in the FV model.

B. Lp-norm IDF

For a given visual word zk, its IDF score is negatively
correlated with its visual word frequency uk (whether this
visual word is common or rare in the database). The con-
ventional IDF treats uk as the number of images possessing
zk, which is denoted as nk in this paper. Although this
strategy agrees with the basic idea, the estimation of uk is
coarse. In an extreme case as illustrated in Fig. 1, visual
words zx and zy appear in all the images through I1 to I6.
According to Eq. 1, both IDF(zx) and IDF(zy) are equal to
zero. It indicates that zx and zy are totally worthless for image
retrieval. However, if we consider the fact that the frequency
distribution of zx and zy over the entire image collection are
quite different, we may realize that these visual words indeed
possess some discriminative power, which is ignored by the
conventional IDF formula. Therefore, we seek to augment the
IDF formula with the TF distribution, a process featured by
Lp-norm pooling.

Specifically, assume that an image collection D consists of
N images, nk of which contain visual word zk. We denote
the image set containing zk as Pk = {I ∈ D|zk ∈ I}, and
|Pk| = nk. From the quantized images {vi}Ni=1, we seek to
estimate the frequency uk of visual word zk. Conventional
IDF treats uk = |Pk| = nk. Our method, instead, employs the
Lp-norm pooling [60] to perform the estimation, which can
be formulated as a weighted sum of the TF data across the N
database images, i.e.,

uk =

N∑
i=1

wi,kv
p
i,k =

∑
Ii∈Pk

wi,kv
p
i,k, p ≥ 0. (3)

Built upon the adjusted estimation of visual word frequency
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Fig. 3. Illustration of four different IDF schemes. An image collection consists
of N images indexed from 1 to N . The term frequencies of word zk in
each image is depicted below. The formulas demonstrate how to calculate the
estimated word frequency of zk for the four IDFs, e.g., the conventional IDF,
average IDF, max IDF, as well as the Lp-norm IDF introduced in this paper.

uk, our framework is presented as follows:

pIDF (zk) = log
N

uk
= log

N∑
Ii∈Pk

wi,kv
p
i,k

, p ≥ 0, (4)

where vi,k denotes the occurrences of zk in image Ii. The
estimated frequency uk is the weighted sum of individual TF
data vi,k. Parameter p determines the extent to which the term
frequency contributes to the estimated value. The coefficient
wi,k reflects the contribution of each image containing zk to
the frequency estimation. Therefore, wi,k should encode the
following properties.

First, images vary a lot in length, i.e., the number of
visual words it contains. Images with a greater length tend
to contain more instances of zk. Put it another way, it is more
probable that zk appears in large images. If it is the case,
we should overestimate its frequency, thus lowering its IDF
score. Consequently, we should extend the wi,k interpretation
by positively correlating it with image length di. For numerical
reasons, it is appropriate to introduce the normalization by
relating image length to the average value d̄. It ensures that
an image of average length has the same weight after image
length normalization.

Next, we seek to incorporate codebook information into
wi,k. Given that uk is larger for a smaller codebook, an-
other normalization should be considered. We propose to
normalize wi,k by the average value of vi,k, in the form of
log(1 + 1

nk

∑
Ii∈Pk

vi,k).
In addition, for practical implementation, the IDF weights

of visual words should be non-negative (each visual word, no
matter how often it appears in bursts, should at least have some
discriminative power).

Taking the aforementioned considerations into account, the
Lp-norm IDF is finally formulated in Eq. 5:

pIDF (zk) = log(1 +
N∑

Ii∈Pk
wi,kv

p
i,k

),

where p ≥ 0, wi,k =
di/d̄

log(1 + 1
nk

∑
Ii∈Pk

vi,k)

(5)

In Eq. 5, di and d̄ denote the number of features in image Ii
and the average number of features for images in the database,
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respectively.

C. Average IDF and Max IDF

First, we show how the conventional IDF is derived from
our generalized IDF family. Assume wi,k = 1 and p = 0,
Eq. 4 simply reduces to the conventional IDF representation
in Eq. 1. Therefore, the conventional IDF is a special case of
the Lp-norm IDF.

Moreover, from Eq. 4, we can further induce two novel
IDF variants, i.e., the average IDF and the max IDF. If we set
wi,k = 1 and p = 1, the average IDF is defined as,

aIDF (zk) = log
N

uk
= log

N∑
Ii∈Pk

vi,k
, (6)

where uk is approximated by the L1-norm of vi,k(i =
1, · · · , nk). Then, if we consider the L∞-norm when wi,k = 1,
the max IDF can be derived as well,

mIDF (zk) = log
N

uk
= log

N

max
i

vi,k
. (7)

These two IDF variants correspond to the average pooling
and max pooling, respectively. An example of how the four
different IDFs discussed above are calculated is presented in
Fig. 3.

The pooling technique we used here differs from that in
feature pooling in two aspects. First, the subject of the pooling
here is the bag-of-words image representation vi, instead of
a subregion in the partitioned image in SPM [61]. Second,
pooling used here is to aggregate the response of the whole
image collection to the frequency accumulates of each visual
word, while in feature pooling, the result is the response of
an image to each visual word.

D. A Parameter Tuning Strategy of Lp-norm IDF

Basically, to determine the optimal value of p in Eq. 5,
one would like to plot a p-mAP curve for parameter tuning.
For general usage, however, an more principled procedure
will bring benefits. To the best of our knowledge, previous
literature has few, if any, references to resort to for our task.
Therefore, in this paper we propose a parameter tuning strategy
of the optimization process. Then, using the p-mAP curves, we
demonstrate the tradeoffs in estimating the p value for a given
system.

Specifically, our idea of parameter tuning is presented as
follows. We seek to minimize a cost function concerning visual
word discriminative power. In a nutshell, we aim at equalizing
the discriminative power of different visual words. In fact, the
TF-IDF weight encodes the importance of a visual word in
separating one image from the others, i.e., the discriminative
power, and we simply take the product of TF and IDF value
as the measurement.

For Lp-norm IDF, TF and pIDF are negatively correlated:
generally, pIDF punishes large TF and favors small TF. In
other words, the Lp-norm IDF aims at achieving a balance
between the two weighting factors. In this manner, burstiness
(high TF) is punished. In literature, TF suppression can be
performed by

√
(·) or log (·) operators [14], [55]. In [62],

only the one-to-one matching scheme is allowed, so the TF
value is at most 1. Our work, instead, employs a global
weighting factor, i.e., the Lp-norm IDF, to eliminate the TF
differences. By tuning the parameter p, different visual words
would possess similar TF·pIDF value, so that the burstiness
problem is correspondingly addressed.

More specifically, the objective function is to minimize the
discriminative power diversity among visual words, namely,

argmin
p

var
k
{ 1

nk

∑
Ii∈Pk

vi,k · pIDF (zk)}, (8)

where the variance operator characterizes the diversity of
discriminative power among visual words. The discriminative
power of a visual word is described by its average TF · pIDF
value. Eq. 8 aims to balance optimally the relationship between
TF and IDF weights, thus minimizing the discriminative power
diversity of different visual words in the codebook.

The parameter tuning strategy in Eq. 8 does not have a
closed form solution for p. Therefore, we adopt a greedy
search method on the Flickr 1M dataset to obtain the optimal
value of p. Note that a non-trivial global solution of Eq. 8
involves p = ∞. But in this case, we find that none of
the visual word are “useful”, which is clearly undesirable.
With this consideration, according to our prior knowledge, we
restrict the search scope of p to 1−6, from which a valid p
value will be discovered. The result is demonstrated in Section
V-C.

IV. VISUAL WORD BURSTINESS

In text retrieval, the term positive adaption or burstiness
refers to the phenomenon in which words tend to appear in
bursts, i.e., once they appear in a document, they are more
likely to appear again.

In the image retrieval community, burstiness often describes
the phenomenon that repetitive structures are present (see the
first row in Fig. 4), so that certain visual words occurs many
times in a single image. Consider the scenario where a query
image contains a visual word that appears in bursts in an
irrelevant image. In this case, this irrelevant image would
get a high similarity score, or even a high rank. Due to the
prevalent existence of burstiness, the retrieval performance can
be compromised to a very large extent. In [14], intra-image and
inter-image burstiness are discussed. Our work differs in that
we leverage the term frequencies across the database, followed
by the optimization of the IDF weight. Another difference lies
in that [14] penalizes burstiness by computing a normalization
factor on-the-fly, while our method assigns weights to visual
words on the visual word level and in an offline manner. A
comparison of our method and [14] is shown in Section V-D.

To analyze the burstiness phenomenon, we plot the visual
word distribution in Fig. 5. For each visual word k defined in
the codebook, its term frequency (TF) in image i is denoted
as vi,k. Then, we count its maximum TF across the image
collection, i.e., max

i
vi,k. The statistical histogram of max

i
vi,k

(k = 1, ...,K, where K is the codebook size), is shown in Fig.
5(a). Then, we denote the maximum term frequency in image
i as Ni, and count the number of images that has a certain
value of Ni, forming a histogram as shown in Fig. 5(b).
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Fig. 4. Visual word burstiness and the impact of Lp-norm IDF. (Top): the burstiness phenomenon. The same markers represent the same visual words. Note
the repetition in these images. (Bottom): the impact of Lp-norm IDF. We plot two markers for each keypoint: red and green markers denote the Lp-norm
IDF and the conventional IDF, respectively. The area of the markers encodes the amplitude of the weights. Note that visual words in repetitive structures
(burstiness) are heavily down-weighted, while the weights of discriminative structures are preserved. A more detailed description is provided in the text.
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Fig. 5. (a): Histogram of visual words for different values of maximum term
frequency; (b): Histogram of images for different values of maximum term
frequency. The data is evaluated over Flickr 1M dataset, and the codebook
size is 1M.

Fig. 5(a) suggests that a majority of visual words maximally
occur 2 or 3 times in an image. On the other aspect, Fig. 5(b)
shows that most images have a maximal term frequency of 5
or 6. This phenomenon is more notable if we consider the fact
that an image typically has hundreds of visual words while the

codebook size is very large, say, 1 million, meaning that it is
of low probability to produce multiple occurrences of the same
visual word given independence assumption. Meanwhile, note
that these statistics are collected from general images, which
is not confined to man-made objects such as buildings, etc.
Therefore, the burstiness phenomenon (see the first row of Fig.
4) widely exists in the image retrieval settings. The analysis
above reveals the importance of repressing the weights of the
visual words that tend to appear in bursts, a problem of which
can be effectively solved using the proposed Lp-norm IDF.

The second row of Fig. 4 depicts the impact of the proposed
Lp-norm IDF on burstiness. The green and red markers
are co-located with each keypoint, and correspond to the
conventional IDF and the Lp-norm IDF weights, respectively.
The size of the markers is proportional to the IDF value. For
each keypoint, a small red marker (in the centre of a large
green marker) indicates that the visual word is heavily down-
weighted. For keypoints which are also displayed in images in
the first row (these keypoints are part of repetitive structures),
the red markers are typically very small. Therefore, keypoints
in bursts have a lower weight. On the other hand, big red
markers denote slightly, if any, down-weighted visual words,
which are quite discriminative structures. These keypoints
are typically not displayed in images in the first row. In
Fig. 4, it is obvious that the more elaborated structures such
as people and discriminative shapes are retained as before
(receive a large red marker). However, the repetitive structures
are heavily punished (receive a small red marker), involving
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Fig. 6. Selection of parameter p. On the Flickr 1M dataset, we plot Eq. 8
against different values of p. Equation 8 achieves its minimum when p is
about 3.5.

man-made constructions and structured background, etc. As
a result, the Lp-norm IDF punishes visual word burstiness,
while preserving the discriminative structures.

V. EXPERIMENTS

We evaluate the performance of the proposed Lp-norm IDF
method on large scale image retrieval task. Experiments are
conducted on four benchmark datasets populated with 1M
distractor images. In this section, the experimental results are
summarized and analysed.

A. Datasets

To evaluate the effectiveness of the Lp-norm IDF, we
conducted experiments on five publicly available datasets:
Oxford 5K [3], Paris 6K [63], Holidays [43], Ukbench [4],
and Flickr 1M [43].

Oxford 5K. Oxford 5K dataset was collected from Flickr
and a total number of 5062 images have been obtained. This
dataset has been generated as a comprehensive ground truth
for 11 distinct landmarks, each containing 5 queries. In total
there are 55 query images.

Paris 6K. Paris 6K dataset was generated in coupling with
Oxford 5K. This dataset contains 6385 high resolution images
from Flickr by queries of Paris landmarks. Again, Paris dataset
is featured by 55 queries of 11 different landmarks. Holidays.
The Holidays dataset is composed of 500 queries from 1491
scene images. For each query, a few (mostly 1 or 2) ground
truth images are annotated. For each query in the Oxford 5K,
Paris 6K, and Holidays datasets, we use Average Precision
(AP) to evaluate retrieval performance, which is calculated as
the area under the Precision-Recall curve. Then, APs of all
query images are averaged, yielding mean Average Precision
(mAP), which is employed to evaluate retrieval accuracy on
each dataset.

Ukbench. The Ukbench dataset contains 10200 images of
2550 groups. Each group has 4 images of the same object,
taken from different views. In this dataset, each image serves
as a query image, so there are 10200 queries. The performance
is measured by the recall of the top-4 candidate images,
referred to as N-S score (maximum 4).

Flickr 1M dataset. The Flickr 1M dataset includes 1 mil-
lion distractor images arbitrarily retrieved from Flickr. These
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Fig. 7. mAP results against different values of p and different MA on Oxford
and Paris datasets. We use Multiple Assignment (MA) [43] here, which assigns
multiple visual words to a descriptor, and we denote the number of quantized
visual words as MA. Five curves are plotted, corresponding to MA = 1,2,...,5,
respectively. The dash line shows the baseline results. It is evident from these
results that when p takes an appropriate value, our method is consistently
higher than the baseline. The maximum is achieved when p is about 3-4. MA
is set to 3 for effectiveness and efficiency considerations.

images are added into the Oxford 5K, Paris 6K, Holidays, and
Ukbench datasets to test the scalability of our approach.

B. Baseline

In this paper, We adopt the image retrieval procedure
proposed in [3] as the baseline approach.

During preprocessing, we extract salient keypoints in the
images from which the 128-dimension SIFT descriptors are
computed. We have implemented the RootSIFT [9] variant
(see Table III and Table IV), due to its effectiveness under
Euclidean distance. Then, from a pool of SIFT features, a
codebook is constructed by Approximate K-means (AKM)
method [3]. Then, the inverted file is built which indexes
database images and allows efficient access.

For online retrieval, SIFT features of the query image are
quantized using the approximate nearest neighbors (ANN)
indexing structure. For each query visual word, candidate
images are found from the corresponding entry in the inverted
file. Scores for these candidate images are calculated using
conventional TF-IDF in Eq. 2. We do not apply the stop word
technique. When L2-normalization is used, the L2-norm of
an image is calculated using the TF histogram without IDF
consideration.

For Oxford 5K and Paris 6K datasets, if not specified,
Hessian-affine detector [3] is employed. In our implementa-
tion, we only allow a one-to-one mapping between SIFT de-
scriptors and Hessian affine regions. This modification reduces
the false matches brought by multiple SIFTs per location,
producing a higher baseline result compared with [3]. We also
report results obtained by DoG-Affine detector in Table III, in
which the scaling factor is set to 12.5 as in [64]. For the
Holidays and Ukbench datasets, we use the SIFT descriptors
provided by their websites.

In addition, Multiple Assignment (MA) [43] is employed,
in which a descriptor is quantized to several visual words,
e.g., {zk1, zk2, zk3...}. We denote the number of quantized
visual words as MA. Moreover, a weighted version of MA,
i.e., Soft Quantization (SQ) [27] is also tested. The difference
between MA and SQ lies in that, the latter assigns a weight
to each quantized visual word. The weight takes the form of
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TABLE I
MAP OF DIFFERENT NORMALIZATION METHODS

Normalization Oxford 5K + Flickr 1M
TF-IDF TF-pIDF

No 0.432 0.629
L1 0.192 0.208
L2 0.523 0.626

exp(− d2

σ2 ), where d denotes the Euclidean distance between
the visual word and the descriptor, and σ is a weighting
parameter set to 0.01 in our experiment.

C. Parameter Analysis

For Lp-norm IDF formula defined in Eq. 5, the parameter
p determines the extent to which burstiness is punished. It is
evident from Eq. 5 that larger value of p indicates amplified
punishment on visual word burstiness. An optimal value helps
produce satisfying performance.

First, we search for p that minimizes the cost function in
Eq. 8 on Flickr 1M dataset. The results are illustrated in Fig.
6. We can see that Eq. 8 achieves the minimum value when
p is about 3.5. Moreover, the curve in Fig. 6 is stable when p
is around 3-4.

Then, we vary the value of p, and test the performance on
Oxford and Paris datasets. The mAP results are presented in
Fig. 7. Here, note that when MA is employed, the IDF score
with respect to each quantized visual word is used. It is clear
from these results that when p is not too large (larger than
5), curves of our method are consistently higher than the TF-
IDF baseline. For MA, we observe a superior performance of
MA = 3 in Fig. 7(a) and MA = 5 in Fig. 7(b). Nevertheless,
since MA = 3 works almost equally well for Paris dataset, for
efficiency considerations, we set MA = 3 for all datasets in
the following experiments.

Furthermore, in Fig. 7, the mAP first rises with p and then
drops after reaching the peak. For different MA values, the
peak is somewhere around p = 3.5. Similar to Fig. 6, for p
between 3 and 4, the performance on the two datasets remains
stable. Note that the results in Fig. 6 and 7 are to some
extent consistent. It shows that Eq. 8 is effective in predicting
the p value. We speculate that the reason lies in that Eq.
8 averages the importance of the visual words: some visual
words with low IDF but not appearing in bursts are being
“activated”; those appearing in bursts are de-emphasized; those
with large IDF scores are preserved as they do not appear
in burst. In this sense, we provide a possible solution to
this sort of optimization problem by making a larger number
of visual words count. We also find that there exists some
inconsistency between the p value of the minimum in Fig. 6
and the maximum in Fig. 7. In fact, for the image retrieval
system as a whole, there exists considerable noise affecting
a local optimization, such as codebook bias (a sub-optimal
partitioning of the feature space), quantization inaccuracy
(using approximate nearest neighbor search), etc. These factors
may cause the deviations between Fig. 6 and Fig. 7. In spite
of this, in the following experiments, we set p to 3.5 for all
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Fig. 8. Image retrieval performance as a function of the codebook size
for different weighting schemes, i.e., the TF-IDF baseline, TF-avgIDF, TF-
maxIDF, and TF-pIDF. Mean Average Precision (mAP) for (a) Oxford 5K, (b)
Paris 6K, (c) Holidays, and N-S score for (d) Ukbench datasets are presented.
It is evident from these results that, the proposed Lp-norm IDF outperforms
other TF-IDF variants at all codebook sizes.

the datasets. In fact, for general applications, p can be set to
3 − 4 without much noticeable difference in image retrieval
performance.

Table I demonstrates the results of using different normal-
ization strategies in Eq. 2. L1 normalization measures the rate
of descriptor matches. For a small query region in a large
image, the L1 normalization will probably fail. Therefore,
L1 normalization produces low baseline result. On the other
hand, no normalization means to directly count the number of
descriptor matches, where images of greater lengths (i.e., with
more visual words) tend to produce more matches. L2 normal-
ization takes a compromise between the above two methods,
and produces the highest baseline result. Therefore, in Table
I, although the Lp-norm IDF achieves +18.3% improvement
(from 0.432 to 0.629) in the case of no normalization, we
choose the L2 normalization in the following experiments.

D. Evaluation

Comparison of four IDFs We discussed four IDFs in
Section III, i.e., the conventional IDF, average IDF (avgIDF),
max IDF (maxIDF), and the Lp-norm IDF (pIDF). The last
three are defined for the first time by our pooling method.
Fig. 8 and Table II compare the retrieval accuracy of the four
IDFs. Results on the four benchmark datasets are reported,
which leads to three major observations.

First, from Table II, max IDF is inferior to the baseline in
large scale experiment. On the four datasets, an mAP drop
of 10.0%, 10.6%, 7.1% and N-S drop of 0.18 is observed,
respectively. Max IDF takes the maximum value of a word’s
TF as the estimation of its frequency. So it neglects the
document frequency, while conventional IDF neglects TF. On
the 1M dataset where the number of images is large, this
limitation is amplified. Consequently, on small datasets, max
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TABLE II
IMAGE RETRIEVAL ACCURACY FOR DIFFERENT TF-IDF WEIGHTING METHODS ON BENCHMARK DATASETS

Dataset
Oxford, mAP Paris, mAP Holidays, mAP Ukbench, N-S
Database Size Database Size Database Size Database Size
5K 1M 6K 1M 1K 1M 10K 1M

TF-IDF 0.685 0.523 0.531 0.404 0.604 0.391 3.393 3.050
TF-avgIDF 0.690 0.540 0.542 0.426 0.624 0.435 3.418 3.094
TF-maxIDF 0.691 0.423 0.544 0.298 0.601 0.320 3.408 2.865
Okapi-BM25 [55] 0.692 0.579 0.562 0.486 0.640 0.504 3.417 3.209
Jégou et al. [14] 0.695 0.558 0.565 0.491 0.610 0.512 3.447 3.204
TF-pIDF 0.696 0.626 0.562 0.513 0.642 0.521 3.454 3.267
Jégou et al. [14] + pIDF 0.701 0.640 0.573 0.531 0.641 0.530 3.476 3.305

IDF shows similar performance with the baseline: max IDF
slightly outperforms the baseline on the Oxford and Paris
datasets, but slightly inferior on the Holidays and Ukbench
datasets. However, on large scale datasets, the situation is
reversed.

Second, Fig. 8 and Table II show that, for each of the four
datasets, average IDF is shown to be slightly superior to both
the conventional IDF and the max IDF. Average IDF improves
mAP by +1.7%, +2.2%, +4.4% and N-S by +0.04 on the four
1M datasets, respectively. In its nature, average IDF explicitly
considers both the TF of visual words in each image and the
document frequency, though in a very simple additive manner.
Therefore, on both small and large datasets, average IDF gives
better performance.

Finally, it is evident in Fig. 8 and Table II that our pro-
posed Lp-norm IDF method consistently outperforms the other
three IDFs. The Lp-norm IDF estimates the word frequency
using both term frequency and document frequency of each
visual word. By carefully weighting the contribution of every
database image, and optimizing the parameter p, Lp-norm IDF
gives better weights to visual words, thus elaborately making
significant improvement over the baseline approach.

Comparison with other weighting methods Since the pro-
posed Lp-norm IDF method focuses on the TF-IDF weighting
scheme, we compare it with other TF-IDF variants, e.g., Jégou
et al. [14] and the Okapi-BM25 weighting [55]. The results
are presented in Table II.

Okapi-BM25 mainly deals with the TF part. The default
parameters are used. In Table II, this method improves over
the baseline, but is inferior to our method. Since Okapi-BM25
is initially proposed in text retrieval where a query has only
a few words, it may lose its power in image retrieval where
thousands of visual words exist in a query image.

We also compare our method with [14]. We use the intra-
image burstiness solution in our experiment. We select the
best-performance formula in [14]. From Table II, [14] pro-
duces better result on the Paris 6K dataset, while on the
others the proposed Lp-norm IDF is shown to be superior. The
weighing scheme proposed in [14] mainly focuses on the TF
factor (with a

√
(·) operator). The TF factor has a more direct

impact on retrieval accuracy, because it deals with burstiness
directly. Since our method is an IDF variant, we further
combine it with the TF variant in [14]. The results in the last

line of Table II indicate that both methods are complementary
to some extent, and can further improve performance. As a
consequence, the above results validate the feasibility of Lp-
norm IDF to the large scale real-world applications.

Combination with post-processing steps Post-processing
techniques are effective means to improve retrieval accuracy
[3], [47], [65]–[67]. In this paper, we add various post-
processing methods to our system to test if they benefit from
the introduction of Lp-norm IDF.

Specifically, for Oxford and Paris datasets, we add spatial
verification (SP) using RANSAC and Query Expansion (QE),
due to the fact that query images in both datasets are archi-
tectures with rigid spatial configurations and that the number
of ground truth images is relatively large. Moreover, we try
two different feature detectors, i.e., the Hessian Affine detector
(HesAff) and the DoG Affine detector (DoGAff). According
to [64], DoGAff detector produces a higher baseline. Further,
the graph fusion technique [65] is employed here to fuse the
rank results of BoW and global HSV histogram. We do not
apply QE on these two datasets because the number of ground
truth images is quite small.

The results are shown in Table III and Table IV. We mainly
discuss the case of DoGAff detector, and the situation in
HesAff is similar. For the DoGAff detector, the performance
of the BoW baseline can be noticeably improved by adding
Lp-norm IDF (+5.9% and +3.4% mAP for the two dataset-
s, respectively). With RootSIFT, the Lp-norm IDF (pIDF)
outperforms RootSIFT on both Oxford and Paris by +4.0%
and +2.4%, respectively. Moreover, when we add Multiple
Assignment (MA) [43] and SP, we achieve 75.8% and 76.8%
mAP on Oxford and Paris, respectively. In this scenario, pIDF
further improves mAP of +3.6% (from 75.8% to 79.4%) and
1.6% (from 76.8% to 78.4%) for the two datasets. In the case
of “RootSIFT + SQ + SP + QE”, we observe that pIDF yields
the best performance: 85.9% (+3.0%) on Oxford, and 86.6%
(+3.3%) on Paris, respectively. We notice that SQ produces
slightly higher accuracy than MA, which can be attributed to
the soft weighting scheme.

On Holidays and Ukbench datasets, we implement the
Graph Fusion (GF) technique [65] to fuse global HSV his-
togram and BoW rank lists. Specifically, we extract a 1000-
D HSV histogram each image, normalize it by its L2-norm,
and scale each dimension by a

√
(·) operator. Using HSV
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TABLE III
MAP RESULTS ON OXFORD AND PARIS DATASETS COMBINING VARIOUS METHODS

Oxford, HesAff Oxford, DoGAff Paris, HesAff Paris, DoGAff
Methods IDF pIDF IDF pIDF IDF pIDF IDF pIDF
BoW 0.685 0.696 0.659 0.718 0.663 0.682 0.715 0.749
BoW + SP 0.706 0.721 0.694 0.739 0.680 0.699 0.739 0.763
BoW + MA + SP 0.740 0.752 0.712 0.754 0.694 0.709 0.746 0.771
BoW + MA + SP + QE 0.813 0.839 0.799 0.844 0.767 0.789 0.827 0.860
RootSIFT 0.692 0.714 0.704 0.744 0.687 0.698 0.735 0.759
RootSIFT + SP 0.728 0.750 0.744 0.774 0.706 0.724 0.755 0.776
RootSIFT + MA+ SP 0.745 0.759 0.758 0.794 0.725 0.737 0.768 0.784
RootSIFT + MA + SP + QE 0.807 0.830 0.814 0.852 0.779 0.795 0.832 0.864
RootSIFT + SQ + SP + QE 0.818 0.836 0.829 0.859 0.781 0.796 0.833 0.866

TABLE IV
ACCURACY ON HOLIDAYS (MAP) AND UKBENCH (N-S) COMBINING

VARIOUS METHODS

Holidays Ukbench
Methods IDF pIDF IDF pIDF
BoW 0.604 0.642 3.393 3.454
BoW + MA 0.598 0.650 3.452 3.508
BoW + MA + GF 0.818 0.843 3.715 3.741
RootSIFT 0.606 0.654 3.457 3.509
RootSIFT + MA 0.615 0.663 3.534 3.576
RootSIFT + MA + GF 0.832 0.850 3.776 3.803
RootSIFT + SQ + GF 0.832 0.851 3.781 3.810

histogram alone, we obtain mAP = 65.4%, N-S= 3.402 on
the two datasets, respectively, both higher than reported [65].

In Table IV, the combination of GF improves performance
significantly. On Holidays, the method “RootSIFT + SQ +
GF” yields mAP of 85.1% and 83.2% with and without pIDF,
respectively; on Ukbench, the N-S score is 3.81 and 3.78,
correspondingly.

It is worth pointing out that Lp-norm IDF brings about more
improvement for Query Expansion than for Graph Fusion. In
fact, QE involves re-querying the database using top-ranked
images, a process again using pIDF. In contrast, GF fuses
BoW with HSV histogram, and the latter does not use pIDF.
As a consequence, pIDF works better for QE.

Scalability To evaluate the scalability of the proposed
method, we populated the Oxford 5K, Paris 6K, Holidays,
and Ukbench datasets with various fractions of the Flickr 1M
dataset. Experimental results are demonstrated in Fig. 9 and
Table II. Four major conclusions can be drawn.

First, we examine the impact of the conventional IDF. It
is obvious in Fig. 9 that the introduction of conventional TF-
IDF helps to improve performance over the “no TF-IDF” case.
After all, the TF-IDF scheme takes into account both inter- and
intra-image visual word distribution, providing discriminative
power to some extent. However, since the conventional TF-
IDF is quite heuristic, the improvement is marginal: for each
of the four datasets, about +4.4%, +2.5%, +2.2% in mAP,
and 0.06 in N-S gain is observed on the 1M-scale database,
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Fig. 9. mAP for (a) Oxford 5K, (b) Paris 6K, (c) Holidays, and N-S score for
(d) Ukbench datasets scaled with Flickr 1M dataset as distractor images. Five
methods are compared, i.e., method without TF-IDF weighting, the TF-IDF
baseline and the proposed TF-avgIDF, TF-maxIDF and TF-pIDF, respectively.
For each database scale, IDF scores are re-computed. It is clear that the Lp-
norm IDF outperforms the other four methods, especially on larger databases.

respectively.
Second, it is notable that as the database gets scaled up,

mAP of our proposed method drops much more slowly. That
is to say, more significant improvement is obtained on larger
database. Notably, the Lp-norm IDF outperforms the TF-IDF
baseline by +10.3%, +10.9%, +13.0% in mAP, and +0.22 in
N-S on Oxford, Paris, Holidays, and Ukbench + 1M datasets,
respectively. These gains are measured in absolute value. The
results validate the scalability of the proposed method.

Third, we observe that the Lp-norm IDF generally works
well on all the four datasets. In essence, the Oxford 5K
and Paris 6K mainly contain images of buildings, while the
Ukbench and Holidays consists of general objects and scenes.
As a consequence, we can conclude that the Lp-norm IDF has
a wide application scope, thus beneficial on general databases.

Fourth, we check the impact of whether the codebook is
”homology” or ”non-homology” [19]. We note that for Oxford
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TABLE V
EFFICIENCY COMPARISON

Datasets Average Retrieval Time 1 (ms)
Oxford + 1M Paris + 1M Holidays + 1M Ukbench + 1M

TF-IDF 84.9 87.0 89.9 80.1
TF-pIDF 85.0 87.8 90.2 80.0
BM25 [55] 87.5 92.1 94.6 81.1
Jégou et al. [14] 89.5 92.8 97.9 81.9

and Paris datasets, although the codebook is trained on Oxford
dataset (homology on Oxford), more notable improvement
is observed on Paris dataset (non-homology on Paris). The
codebook trained on Oxford fits well the feature distribution,
so can be quite discriminative for Oxford dataset, but instead
much more ambiguous [25] for Paris. Therefore, the burstiness
problem is more severe on Paris dataset. Our proposed method
helps to down-weight visual word in bursts and alleviate the
burstiness problem, so more improvement is brought on Paris
dataset. Similarly, the codebook of the Holidays dataset is also
obtained on distractor images, and the improvement can be as
large as 13.0% in absolute value. This phenomenon indicates
that Lp-norm IDF based approach generalizes well to the
case where the codebook is trained on irrelevant data (non-
homology) and the improvement is much more considerable.

In addition, in a dynamic system (new images are being
added and some existing images are being removed), the
Lp-norm IDF can be calculated in a “batch” manner. In
other words, the IDF scores can be updated after a fixed
time duration. Since the computation occurs in the back-stage
mode, we introduce little computational cost. In Fig. 9, the
IDF scores are actually re-computed for each database size,
which can be viewed as a dynamic system. Therefore, our
method is effective in the dynamic case.

Efficiency Efficiency is an important issue in many comput-
er vision tasks [73], [74]. In our evaluation, Table V compares
the average retrieval time 1 of different approaches. Note that
the sorting of the database image scores takes about 65ms
out of the average retrieval time statistics. Since the Lp-norm
IDF proposed in this paper is an offline approach, this method
only marginally increases the offline training time but shed no
influences on the online image retrieval. Therefore, the Lp-
norm IDF share the same time and memory efficiency with
the baseline approach. The average retrieval time is 85.0 ms,
80 ms, 90.2 ms, and 80.0 ms for Oxford, Paris, Holidays, and
Ukbench + 1M datasets, respectively. Okapi-BM25 weighting
is the least efficient one, because this method computes the
TF-IDF weights online, resulting in more efficiency loss.
As a result, compared with the baseline, the BM25 weight,
and [14], our method better meets user’s expectation of fast
response time while enjoying much higher retrieval accuracy.

Furthermore, the computation of Lp-norm IDF takes 6.80s
on the 1M database, while the conventional IDF consumes

1Average retrieval time does not include feature extraction and quantization.
We run our experiment with C implementation on a 2.40-GHz CPU of a
Sixteen-Core Intel Xeon server with 32 GB memory. On Flickr 1M dataset,
quantization of an image takes 0.42s on average.

0.031s. Considering the fact that Lp-norm IDF is calculated
in an offline manner, the computation time (6.80s) can nearly
be neglected. On large scale web image retrieval applications,
when the database gets larger, we envision a batch processing
manner to update the Lp-norm IDF, i.e., the Lp-norm IDF can
be calculated everytime when a predefined batch of images
are indexed. Consequently, the proposed Lp-norm IDF is time
efficient both online and offline, and can be readily adopted
in real-world applications.

Comparison with state-of-the-arts We compare our results
with state-of-the-art methods on the four datasets in Table VI.
First, We can see that our method achieves competitive results
on Oxford and Paris datasets.

Specifically, compared with [9], our system does not ap-
ply the Discriminative Query Expansion (DQE) and spa-
tial database-side feature augmentation (SPAUG), which are
shown to yield consistent improvements on Oxford and Paris
datasets. Moreover, a different feature detector is used in [9],
which produces a higher baseline.

We also notice that [69] reports higher mAP on Oxford and
Paris datasets. In [69], kNN reranking is employed on top of
the retrieval system. They report mAP of 75.2% and 74.1%
on the two dataset before reranking, and our results are 77.4%
(+2.2%) and 77.6% (+3.5%) respectively. Also note that we
report higher results on Ukbench and Holidays datasets than
[69].

Second, for the comparison on Holidays and Ukbench
datasets, we achieve the state-of-the-art results after combining
GF as a post-processing step. Specifically, we have obtained
mAP of 85.1% on Holidays and N-S of 3.81 on Ukbench.
Because the illumination changes on these two datasets are
less severe compared to Oxford and Paris datasets, the fusion
of global color feature works well.

We provide four groups of sample retrieval results, one for
each dataset, in Fig. 10. We can see that the proposed Lp-norm
IDF can enhance the retrieval accuracy greatly.

VI. CONCLUSION

This paper proposed an efficient yet effective IDF weight-
ing scheme, i.e., the Lp-norm IDF. By Lp-norm pooling,
we integrate term frequency, document frequency, document
length as well as the codebook information, into the final IDF
representation. The Lp-norm IDF functions on the visual word
level, and can deal with the burstiness problem by down-
weighting visual words in bursts. The parameter p is tuned
by minimizing a cost function.
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TABLE VI
COMPARISON WITH STATE-OF-THE-ART METHODS ON HOLIDAYS AND UKBENCH DATASETS

Methods Ours [68] [65] [51] [9] [69] [70] [46] [28] [71] [72] [14]
Oxford, mAP(%) 85.9 84.9 - - 92.9 88.4 68.7 - 74.7 85.0 81.4 68.5
Paris, mAP(%) 86.6 82.4 - - 91.0 91.1 - - - 85.5 80.3 -
Ukbench, N-S score 3.81 - 3.77 3.56 - 3.52 3.60 3.50 3.42 - 3.67 3.64
Holidays, mAP(%) 85.1 75.8 84.6 78.0 - 76.2 80.9 78.9 81.3 82.1 - 84.8

Query

Query

Query Query

Fig. 10. Sample retrieval results of (Top:) Oxford, (Middle:) Paris, (Bottom Left:) Holidays, (Bottom Right:) Ukbench datasets using a codebook of
1M visual words. The query images are to the left of the dash line and the following images correspond to the top-ranked images (discarding the query).
For each query, the baseline results are presented in the first row, and the Lp-norm IDF results are shown in the second row. Green/red boxes indicate the
correct/incorrect results, respectively. Among the four samples, mAP is increased from 14.9% to 63.7% (+48.8%) on Oxford, mAP from 50.0% to 58.3%
(+8.3%) on Paris, mAP from 12.5% to 100.0% (+87.5%) on Holidays, and N-S from 2 to 4 on Ukbench, respectively.

Extensive experiments on several benchmark datasets show
that the proposed Lp-norm IDF has five advantages. First,
Lp-norm IDF brings about improvement at various codebook
sizes, which is of vital importance because codebook size
matters a lot while no effective methods have been proposed
to optimally select a codebook size. Second, on large scale
experiments, our method is shown to be increasingly beneficial
when the database gets scaled up. This enables the potential
merits of Lp-norm IDF in industrial use. Thirdly, the Lp-
norm IDF outperforms several TF-IDF weighting approaches,
including the widely used Okapi-BM25 method. When com-
bined with post-processing steps, we are capable of producing
competitive results compared with the state-of-the-art meth-
ods. Fourthly, the Lp-norm IDF is shown to achieve more
prominent improvements when the codebook is trained on
irrelevant data, which demonstrates its generalization power.
Finally, since the Lp-norm IDF is an offline approach, it enjoys
the same memory usage and computation efficiency as the
baseline model.

In the future, more investigation will be focused on the
empirical studies of visual word frequency distribution and
its discriminative power. We envision that a more uniformly
distributed frequency profile may serve to enhance the discrim-
inative power of the codebook overall. This study re-issues the

importance of visual word weighting, and various weighting
strategies will be studied.
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